

NOTES:

- 1. Dimensions for all drawings are in inches (millimeters).
- 2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.
- 3. Lead cross section is controlled between .050 (1.27) from the seating plane and the end of the leads.

FEATURES

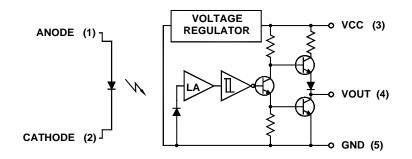
- · Black plastic housing
- Choice of inverter or buffer output functions
- Choice of open-collector or totem-pole output configuration
- · No contact switching
- TTL/CMOS compatible output functions

	PART NUMBER DEFINITIONS				
Γ	H22LTB	Totem-pole, buffer output			
H22LTI Totem-pole		Totem-pole, inverter output			
	H22LOB	Open-collector, buffer output			
	H22LOI	Open-collector, inverter output			

NOTES (Applies to Max Ratings and Characteristics Tables.)

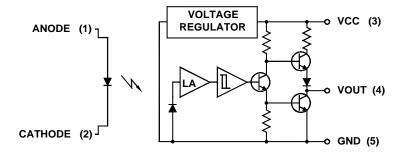
- 1. Derate power dissipation linearly 1.67 mW/°C above 25°C.
- 2. Derate power dissipation linearly 2.50 mW/°C above 25°C.
- 3. RMA flux is recommended.
- 4. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 5. Soldering iron 1/16" (1.6mm) from housing.
- 6. As long as leads are not under any stress or spring tension.

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)							
Parameter	Symbol	Rating	Units				
Operating Temperature	T _{OPR}	-40 to +85	°C				
Storage Temperature	T _{STG}	-40 to +85	°C				
Soldering Temperature (Iron)(3,4,5,6)	T _{SOL-I}	240 for 5 sec	°C				
Soldering Temperature (Flow)(3,4,6)	T _{SOL-F}	260 for 10 sec	°C				
EMITTER							
Continuous Forward Current	I _F	50	mA				
Reverse Voltage	V _R	5	V				
Power Dissipation ⁽¹⁾	PD	100	mW				
SENSOR							
Output Current	Io	50	mA				
Supply Voltage	Vcc	4.0 to 16	V				
Output Voltage	Vo	30	V				
Power Dissipation ⁽¹⁾	P _D	150	mW				

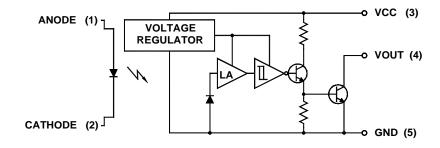


ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C)						
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNITS
Operating Supply Voltage	V_{CC}	V_{CC}	4.5		16	V
INPUT DIODE						
Forward Voltage	$I_F = 20 \text{ mA}$	V_{F}	_		1.7	V
Reverse Leakage Current	V _R = 5 V	I _R	_		10	μΑ
COUPLED						
Operating Supply Current	$I_F = 15$ mA or 0 mA, $V_{CC} = 16$ V	I_{CC}	_		5	mA
Low Level Output Voltage	I_F = 0 mA, V_{CC} = 5 V, R_L = 100 Ω	V _{OL}	_		0.4	V
H22LTB, H22LOB						
Low Level Output Voltage	$\rm I_F$ = 15 mA, $\rm V_{CC}$ = 5 V, $\rm R_L$ = 360 Ω	V _{OL}	_		0.4	V
H22LTI, H22LOI						
High Level Output Voltage	I_F = 15 mA, V_{CC} = 5 V, I_{OH} = -800 μ A	V_{OH}	2.4		_	V
H22LTB						
High Level Output Voltage	$I_F = 0$ mA, $V_{CC} = 5$ V, $I_{OH} = -800 \ \mu A$	V_{OH}	2.4		_	V
H22LTI						
High Level Output Current	$I_F = 0$ mA, $V_{CC} = 5$ V, $I_{OH} = -800 \ \mu A$	I _{OH}			100	μ A
H22LOB						
High Level Output Current	$I_F = 0$ mA, $V_{CC} = 5$ V, $V_{OH} = 30$ V	I _{OH}	_		100	μ A
H22LOI						
Turn on Threshold Current	V_{CC} = 5 V, R_L = 360 Ω	I _F (+)	_		15	mA
Turn off Threshold Current	V_{CC} = 5 V, R_L = 360 Ω	I _F (-)	0.50			mA
Hysteresis Ratio		I _F (+) / I _F (-)		1.3		
Propagation Delay	V_{CC} = 5 V, R_L = 360 Ω	t _{PLH,} t _{PHL}		5		μs
Output Rise and Fall Time	V_{CC} = 5 V, R_L = 360 Ω	t _{r,} t _f		70		ns

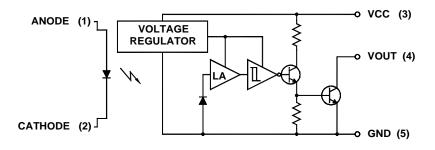
INPUT/OUTPUT TABLE							
Part Number	LED	Output					
H22LTB	On	High					
H22LTB	Off	Low					
H22LTI	On	Low					
H22LTI	Off	High					
H22LOB	On	High					
H22LOB	Off	Low					
H22LOI	On	Low					
H22LOI	Off	High					



CIRCUIT SCHEMATICS


H22LTB

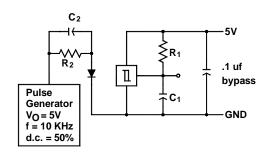
Totem-Pole Output Buffer


H22LTI

Totem-PoleOutput inverter

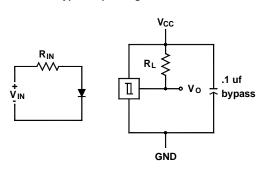
H22LOB

Open-Collector Output Buffer

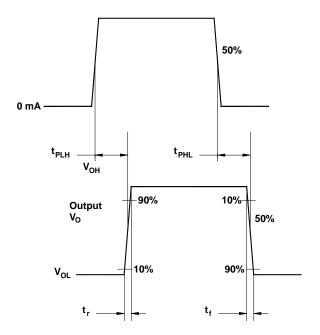


H22LOI

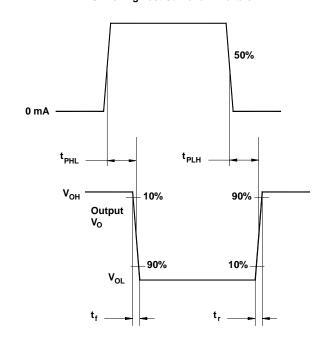
Open-Collector Output Inverter



Switching Speed Test Circuit



 $R_1 = 180 \Omega$ $R_2 = 360 \Omega$ $C_1 = 15 \text{ pf}$ $C_2 = 20 \text{ pf}$ C₁and C₂include probe and stray wire capacitance


Typical Operating Circuit

Switching Test Curve for Buffers

Switching Test Curve for Inverters

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation